Step of Proof: equiv_rel_wf
12,41
postcript
pdf
Inference at
*
I
of proof for Lemma
equiv
rel
wf
:
T
:Type,
E
:(
T
T
). EquivRel(
T
;
x
,
y
.
E
(
x
,
y
))
latex
by ((Unfold `equiv_rel` 0)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat
C
3:n)) (first_tok :t) inil_term)))
latex
C
.
Definitions
x
,
y
.
t
(
x
;
y
)
,
P
&
Q
,
x
(
s1
,
s2
)
,
EquivRel(
T
;
x
,
y
.
E
(
x
;
y
))
,
t
T
,
,
x
:
A
.
B
(
x
)
Lemmas
trans
wf
,
sym
wf
,
refl
wf
origin